Pressure injuries (PIs) remain a serious health care concern. A report by the Agency for Health Research and Quality shows that hospital-acquired pressure injuries (HAPIs) increased by 6% from 21.7 HAPIs per 1000 discharges in 2014 to 23 HAPIs per 1000 discharges in 2017.1 Prevalence of severe HAPIs (stage 3, stage 4, deep tissue pressure injury, and unstageable) remained at about 1% of the acute care population from 2011 to 2016.2 It is the authors’ belief that the lack of progress in preventing these significant complications may be due to an increase in the aging population, survival of more medically complex patients, or a combination of multiple factors. It is, however, imperative that severe PIs are managed as efficiently and effectively as possible.
Caring for severe PIs is costly to the health care system. According to the Agency for Health Research and Quality, PIs cost from $9.1 to $11.6 billion per year in the United States.3 About 59% of these costs are disproportionately attributable to a relatively small number of patients with stage 3 and 4 full-thickness wounds, which occupy clinician time and hospital resources.4 The cost of an individual patient’s care ranges from $20,900 to $151,700 per PI. Medicare estimated in 2007 that each PI added $43,180 in costs to a hospital stay.5
Because long-term acute care hospitals (LTACHs) specialize in treating patients who may have more than 1 serious condition, but who may improve with time and care and return home, and who require long stays (on average, more than 25 days),6 these hospitals have a higher overall prevalence of PIs when compared with rehabilitation hospitals. Overall prevalence in the LTACH environment ranged from a high of 32.9% in 2006 to a low of 28.8% in 2015.7 HAPI prevalence in LTACHs ranged from a high of 9.0% (2006) to a low of 5.6% (2015), which was generally still higher than in most other care settings.7 For the above clinical reasons, care decisions should be evidence-based.
In the authors’ practice, the majority of patients who are admitted with PIs to 5 LTACHs located in the southeast United States have had skin organ failure due to life-threatening injuries and complex medical/surgical challenges, or have wounds that have been unresponsive to care from other treating facilities. Patient care goals in these LTACHs are to stop PIs from worsening by increasing in size or stage, begin the healing process, and minimize the risk of additional PI occurrence. Care plans are multifactorial and must include the use of a specialty support surface.
Currently, there are very limited data available to make decisions regarding support surface selection. A consensus panel published a surface selection algorithm, but due to the variable performance across different support surfaces, definitive recommendations were not given.8 The National Pressure Injury Advisory Panel (NPIAP, formally NPUAP) have put forth a tremendous effort and created the Support Surfaces Standards Initiative, whose efforts were designed to delineate surface performance.9 This team of clinicians, scientists, and industry supporters have recently published test methods for support surfaces, and there is ongoing testing in the laboratory setting.9 However, there remains a void of published evidence in the clinical community as to which surface heals a PI faster than another surface.
The present study sought to provide data regarding PI healing to enable informed decision-making regarding support surfaces. This study evaluated PI healing rates on the following 2 specialty support surfaces, which were indicated for persons with stage 3 and stage 4 pressure injuries: 1) a fluid immersion system (FIS) continuous low-pressure, low-air-loss support surface (Dolphin FIS; Joerns Healthcare, Charlotte, NC) and 2) an air-fluidized therapy (AFT) bed (Envella Air Fluidized Therapy bed; Hill-Rom Inc, Batesville, IN). The AFT bed provides fluid support that is generated by tiny silicone-coated ceramic beads that are blown upward toward a cover sheet to create a fluid medium. The goal is to maximize envelopment of the body and significantly reduce shear, friction, and pressure as well as mechanical stress applied to the skin and subcutaneous tissue when compared with a nonfluid support surface.10 AFT also provides microclimate management.10 The FIS surface also aims to provide immersion. This surface uses air bladders to achieve lower interface pressure and immersion. According to Mendoza et al,11 the FIS surface does not provide microclimate management features.
To provide objective clinical evidence, the present study aimed to compare the healing rates of stage 3 and stage 4 PIs in patients on an AFT bed compared with FIS continuous low-pressure, low-air-loss support surface in the LTACH environment.