Moisture is a key component for keeping every cell in the body alive and functioning. The concept of moist wound healing originated in 1962 when George Winter discovered that epithelialization would proceed twice as fast in a moist environment as under a scab.

Cells require moisture to migrate from the wound edges to close a wound; they cannot migrate in a dry wound where granulation tissue production is impaired and new epithelial cells must burrow beneath the eschar or scab. Therefore, wounds that are allowed to dry out will heal more slowly than those that have the benefit of moisture. Additionally, moist wound healing maintains optimal wound temperatures and reduces the rate of infection and scarring.

Dressing choice is an important part of the healing process. The essential role and function of a dressing is to provide an environment that promotes wound healing. Dressings that are semi-occlusive, moisture-retentive, and nonadherent to the wound bed help provide the optimal environment for wound healing. Moist wound dressings include foams, alginates, hydrogels, hydrocolloids, transparent films, and some topical treatments. Care must be taken to ensure optimal moisture in the intact periwound skin, as well as the wound bed.

At the same time, constant moisture may cause maceration of wound and periwound tissue. To manage excess drainage, a dressing must be absorbent. When not using an indicator dressing that allows the clinician to visualize when the dressing should be changed, a skin barrier such as a cream or skin sealant may be placed on the surrounding intact skin to protect it in order to help reduce maceration risk.

The appropriate dressing can have a positive impact on wound healing.

Pearls for Practice is made possible through the support of Ferris Mfg. Corp, Burr Ridge, IL (www.polymem.com). The opinions and statements of the clinicians providing Pearls for Practice are specific to the respective authors and are not necessarily those of Ferris Mfg. Corp., OWM, or HMP Communications. This article was not subject to the Ostomy Wound Management peer-review process.