Using Leptospermum Honey to Manage Wounds Impaired by Radiotherapy: A Case Series

Author(s): 
Val Robson, BSc, RGN; and Rose Cooper, BSc, PhD, PGCE

The study product, Medihoney™ Antibacterial Honey (Medihoney Pty, Ltd, Australia), is a mix of Australian and New Zealand Leptospermum honeys (derived from jellybush and manuka nectar, respectively) . The gamma-irradiated (sterile) honey, available in 10- and 20-g tubes, is licensed in the UK and indicated for use in chronic wound care.

     Patient 1. In November 2003, 63-year-old Mr. G was diagnosed with vocal cord carcinoma and underwent a course of radiotherapy that was completed in February 2004. His past medical history included chronic obstructive pulmonary disease. As a result of radiotherapy, the skin around Mr. G’s neck and upper chest atrophied and was extremely fragile. He was admitted to hospital in January 2005 with increased hoarseness, weight loss, and dysphagia. A direct laryngoscopy showed an irregular area on the midline/right supraglottic area, which proved to be poorly differentiated invasive squamous cell carcinoma. In early February, Mr. G developed left lower lobe pneumonia. A tracheostomy was performed before total laryngectomy, thyroidectomy, bilateral selective neck dissection IIa, III, IV, and Povox valve insertion. At 15 days post-op, the wound began to break down from the right side of the stoma (see Figure 1a). An area to the left of the stoma broke down 19 days postoperatively (see Figure 1b.)

     Although dressings were changed daily, the skin’s fragility and the copious amount of exudate contributed to maceration of the surrounding skin. The wound base to the left of the stoma had a layer of thick slough. The wound to the right of the stoma contained small areas of granulation tissue. During the first week, the wounds were treated with daily applications of hydrofiber rope to manage the exudate but Mr. G found this painful and uncomfortable. To reduce pain associated with the dressing and to assist healing, a hydrofiber rope dressing (Aquacel ™, Convatec Ltd, a division of E.R. Squibb & Sons, princeton, NJ) was soaked with honey before application. This method kept the honey in contact with the wound bed even though this type of wound produces copious amounts of exudate. Daily dressing changes continued due to the amount of wound exudate and honey also was applied directly to the periwound area to reduce and prevent maceration. An absorbent pad was used as the secondary dressing. Because of the tenderness and fragility of the surrounding skin, a paper adhesive tape was used to secure the dressing. After 5 weeks of treatment, the wound to the right of the stoma healed (see Figure 1c) and the wound to the left of the stoma had de-sloughed and was granulating well (see Figure 1d). Dressing change frequency decreased as healing progressed. After 8 weeks, the wound to the right of the stoma remained healed (see Figure 1e). Unfortunately, Mr. G died before the second wound had healed completely; the wound was 80% healed and the remaining area had de-sloughed and was granulating well (see Figure 1f).

     It is difficult to know whether the patient’s wound would have gone on to heal with the application of hydrofiber dressings alone. Although no recognized pain scale was employed, Mr. G reported that applying honey lessened trauma to the wound during dressing changes.

     Patient 2. In 1988, 93-year-old Ms. H had a squamous cell carcinoma of the left inner canthus of her left eye removed.

References: 

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global Cancer Statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.
2. Bentzen SM, Overgaard J. Editorial. Sem Radiation Oncol. 1994;4(2):53–54.
3. Dormand EL, Banwell PE, Goodacre TEE. Radiotherapy and wound healing. Int Wound J. 2005;2(2):112–127.
4. Price NM. Radiation dermatitis following electron beam therapy. Arch Dermatol. 1978;114(1):63–66.
5. Fajardo LF, Berthrong M. Radiation damage in surgical pathology part I. Am J Surg Pathol. 1978;2(2):159–199.
6. Goldschmidt H, Sherwin WK. Reactions to ionizing radiation. J Am Acad Dermatol. 1980;3(6):551–579.
7. Fajardo LF, Berthrong M. Radiation damage in surgical pathology part III. Salivary glands, pancreas and skin. Am J Surg Pathol. 1978;5(3):279–296.
8. LeBoit PE. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease. J Am Acad Dermatol. 1989;20(1):236–241.
9. Fisher J, Scott C, Stevens R, et al. Randomized phase III study comparing best supportive care to Biafine as a prophylactic agent for radiation-induced skin toxicity for women undergoing breast irradiation: radiation therapy oncology group (RTOG) 97-13. Int J Radiation Oncol Biol Phys. 2000;4(5):1307–1310.
10. McNees P, Meneses KD. Pressure ulcers and other chronic wounds in patients with and patients without cancer: a retrospective comparative analysis of healing patterns. Ostomy Wound Manage. 2007;53(2):70–78.
11. Denham JF, Hauer-Jensen M. The radiotherapeutic injury — a complex “wound”. Radiother Oncol. 2002:63(2):129–145.
12. Porock D, Nikoletti S, Kristjanson L. Management of radiation skin reactions: literature review and clinical applications. Plast Surg Nurs/Winter. 1999;19(4):185–191.
13. Barkham AM. Radiation skin reactions and treatments. Professional Nurse. 1993;8(11):734–736.
14. Nystedt KE, Hill JE, Mitchell AM, et al. The standardization of radiation skin care in British Columbia: a collaborative approach. Oncol Nurs Forum. 2005;32(6):1199–1205.
15. Wickline MM. Prevention and treatment of acute radiation dermatitis: a literature review. Oncol Nurs Forum. 2004;31(2):237–247.
16. Sitton E. Early and late radiation-induced skin. Part II: Nursing care of irradiated skin. Oncol Nurs Forum. 1992;19(6):907–912.
17. Heenan ALJ. Emollient applications for chronic skin problems. Professional Nurse. 1996;11(11):743–748.
18. Mendelsohn FA, Divino CM, Kerstein ED. Wound care after radiation therapy. Advances Skin Wound Care. 2002;15(5):216–224.
19. Bardy J, Slevin NJ, Mais KL, Molassiotis A. A systematic review of honey uses and its potential value within oncology care. J Clin Nurs. 2008;17(19):2604–2623.
20. Robson V, Cooper RA, Ehsan ME. The use of honey in wound management following ENT surgery. Primary Intention. 2007;15(4):176–180.
21. Robson V. The use of Leptospermum honey in chronic wound management. J Community Nurs. 2004;18(9):24–28.
22. Cooper RA, Molan PC, Krishnamoorthy L, Harding KG. Manuka honey used to heal a recalcitrant surgical wound. Eur J Clin Microbiol Infect Dis. 2001;20(10):758–759.
23. Stone HB, Cleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4(9):529–536.
24. Porock D. Factors influencing the severity of radiation skin and oral mucosal reactions: development of a conceptual framework. Eur J Cancer Care. 2002;11(1):33–43.
25. Porock D, Kristjanson L, Nikoletti S, Cameron F, Pedler P. Predicting the severity of radiation skin reactions in women with breast cancer. Oncol Nurs Forum. 1998;25(6):1019–1029.
26. Hom DB, Adams G, Koreis M, Maisel R. Choosing the optimal wound dressing for irradiated soft tissue wounds. Otolaryngol Head Neck Surg. 1999;121(5):591–598.
27. Porock D, Kristjanson L. Skin reactions during radiotherapy for breast cancer: the use and impact of topical agents and dressings. Eur J Cancer Care. 1999;8(3):143–153.
28. Margolin SG, Breneman JC, Denman D, La Chapelle P, Weckbach L, Aron B. Management of radiation-induced moist skin desquamatation using hydrocolloid dressing. Cancer Nurs. 1990;13(2):71–80.
29. Borg M, Wilkinson D, Humeniuk V, Norman J. Successful treatment of radiation induced breast ulcer with hyperbaric oxygen. Breast. 2001;10(4): 336–341.
30. Schimp VL, Worley C, Brunello S, et al. Vacuum-assisted closure in the treatment of gynaecologic oncology wound failures. Gynecol Oncol. 2004;92(2):586–591.
31. Robson V, Martin L, Cooper RA The use of Leptospermum honey on chronic wounds in breast care. In: White R, Cooper R, Molan P. Honey: A Modern Wound Management Product. Aberdeen, UK: Wounds UK Publishing;2005.
32. Sofka K, Wiszniewsky G, Blaser G, Bode U, Simon A. Antibacterial honey (Medihoney™): an antiseptic option for wound care in paediatric oncology? Krh Hyg Infverh. 2004;26(5):183–187.
33. Simon A, Sofka K, Wiszniewsky G, Blaser G, Bode U, Fleischhack G. Wound care with antibacterial medical honey (Medihoney) in pediatric haematology oncology. Support Care Cancer. 2006;14(1):91–97.
34. Blaser G, Santos, K, Bode U, Vetter H, Simon A. Effect of medical honey on wounds colonised or infected with MRSA. J Wound Care. 2007;16(8):325–328.
35. Moolenaar M, Poorter RL, van der Toorn PPG, et al. The effect of honey compared to conventional treatment on healing of radiotherapy-induced skin toxicity in breast cancer patients. Acta Oncologica. 2006;45(5):623–624.
36. Biswal BM, Zakaria A, Ahmad NM. Topical application of honey in the management of radiation mucositis. A preliminary study. Support Cancer Care. 2003;11(4):242–248.
37. Motallebnejad M, Akram S, Moghadamnia A, et al. The effect of topical application of pure honey on radiation-induced mucositis: a randomized clinical trial. J Contemp Dent Pract. 2008:9(3):40–47.
38. Mustoe TA, Purdy J, Gramates P, Deuel TF, Thomason A, Pierce GF. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor BB. Am J Surg. 1989;158(4):345–350.
39. Bernstein EF, Harisiadis L, Salomon G, et al Transforming growth factor beta improves healing of radiation-impaired wounds. J Invest Dermatol. 1991;97(3):430–434.
40. Cromack DT, Porras-Reyes B, Purdy JA, Pierce GF, Mustoe TA. Acceleration of tissue repair by transforming growth factor beta 1: identification of in vivo mechanisms of action with radiation-induced specific healing deficits. Surgery. 1993;113(1):36–42.
41. Nall AV, Brownlee RE, Colvin CP, et al. Transforming growth factor beta 1 improves wound healing and random flap survival in normal and irradiated rats. Arch Otolaryngol Head Neck Surg. 1996;122(2):171–177.
42. Vegesna V, McBride WH, Taylor JM, Withers HR. The effects of interleukin-1 beta or transforming growth factor-beta on radiation-impaired murine skin wound healing. J Surg Res. 1995;59(6):699–704.
43. Jagetia GC, Rajanikant GK. Effect of curcumin on radiation-impaired healing of excisional wounds in mice. J Wound Care. 2004;13(3):107–109.
44. Maddocks-Jennings W, Wilkinson J M, Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complementary Ther Clin Pract. 2005;11(4):224–231.












































Anonymoussays: March 29.2010 at 13:05 pm

yes its great,
iam a nurse in jordan ,also i have personal experiences by using honey in treatment pressure ulcers
my e-mail:
mms23y@gmail.com

Reply to this comment »

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
  • Use to create page breaks.

More information about formatting options

Image CAPTCHA
Enter the characters shown in the image.